Electrophysiological Abnormalities in SOD1 Transgenic Models in Amyotrophic Lateral Sclerosis: The Commonalities and Differences
نویسندگان
چکیده
Since its first description in 1874 by Charcot, the hallmark feature of ALS is the progressive degeneration of upper and lower motoneurons (Charcot, 1874). In the spinal cord, motoneuron degeneration starts long before symptom onset and advances in a size-related fashion, in which large-size alpha-motoneurons degenerate first followed by small-size alpha-motoneurons (Pun et al., 2006; Hegedus et al., 2007; Hegedus et al., 2008). There are conflicting reports regarding the survival of the smallest-sized spinal motoneurons, the gamma-motoneurons (Swash and Fox, 1974; Sobue et al., 1981). Despite its original description, the neuronal degeneration in ALS is not limited to motoneurons. Recent reports have shown evidence for degeneration of neurons in the brain (Karim et al., 1998; Lloyd et al., 2000; Maekawa et al., 2004) and interneurons in the spinal cord (Konno et al., 1986; Williams et al., 1990; Takahashi et al., 1993; Stephens et al., 2006). Before their degeneration, spinal motoneurons experience progressive changes in their properties. These changes result from the pathological actions of the disease and the compensatory mechanisms of the nervous system to mitigate the neuronal malfunction. In this chapter, we describe the changes in the anatomical and electrical properties of spinal motoneurons in various genetic mouse models of ALS and critically analyze literature for the common and different pathological features across these models. We also present data from computer simulations showing the consequences of the alterations in properties of mutant motoneurons on cell excitability and dendritic processing of synaptic inputs. The presented computational analysis allowed for the identification of motoneuron alterations undetectable using standard electrophysiological methods. This information is essential for understanding motoneuron pathophysiology in ALS.
منابع مشابه
An Iranian familial amyotrophic lateral sclerosis pedigree with p.Val48Phe causing mutation in SOD1: a genetic and clinical report
Objective(s): Amyotrophic lateral sclerosis (ALS), a fatal progressive neurodegenerative disorder, is the most common motor neuron disease in European populations. Approximately 10% of ALS cases are familial (FALS) and the other patients are considered as sporadic ALS (SALS). Among many ALS causing genes that have been identified, mutations in SOD1 and C9orf72 are the most common genetic causes...
متن کاملEffect of genetic background on phenotype variability in transgenic mouse models of amyotrophic lateral sclerosis: a window of opportunity in the search for genetic modifiers.
Transgenic (Tg) mouse models of FALS containing mutant human SOD1 genes (G37R, G85R, D90A, or G93A missense mutations or truncated SOD1) exhibit progressive neurodegeneration of the motor system that bears a striking resemblance to ALS, both clinically and pathologically. The most utilized and best characterized Tg mice are the G93A mutant hSOD1 (Tg(hSOD1-G93A)1GUR mice), abbreviated G93A. In t...
متن کاملPostnatal electrical and morphological abnormalities in lumbar motoneurons from transgenic mouse models of amyotrophic lateral sclerosis.
Antidromically identified lumbar motoneurons intracellularly recorded in the entire brainstem/spinal cord preparation isolated from SOD1(G85R) postnatal mice (P3-P10) were labelled with neurobiotin and fully reconstructed in 3D from serial sections in order to analyse their morphology. This staining procedure revealed differences between WT and SOD1(G85R) dendritic trees for most metric and top...
متن کاملAbnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models.
Neuronal mitochondrial morphology abnormalities occur in models of familial amyotrophic lateral sclerosis (ALS) associated with SOD1 and TDP43 mutations. These abnormalities have been linked to mitochondrial axonal transport defects, but the temporal and spatial relationship between mitochondrial morphology and transport alterations in these two distinct genetic forms of ALS has not been invest...
متن کاملA major QTL on mouse chromosome 17 resulting in lifespan variability in SOD1-G93A transgenic mouse models of amyotrophic lateral sclerosis.
Amyotrophic lateral sclerosis is a late-onset degenerative disease affecting motor neurons in the spinal cord, brainstem, and motor cortex. There is great variation in the expression of ALS symptoms even between siblings who both carry the same Cu/Zn superoxide dismutase (SOD1) mutations. One important use of transgenic mouse models of SOD1-ALS is the study of genetic influences on ALS severity...
متن کامل